Author: AVLAdmin

Beautifully repurposed cafeteria

Saratoga Springs High School Acoustic Design

Beautifully repurposed cafeteria

 

In response to some very positive compliments concerning our cafeteria acoustic design at Saratoga Springs High School, we thought we would share that project news with you.

 

Saratoga Springs high school cafeteria

 

Cafeterias are tough, as we explained previously in  “Help, I Work In A Cafeteria and I’m Going Deaf!” .  Truly, cafeteria space is one of the worst when it comes to conquering the acoustics. Think “tin can.”  

 

cafeteria

 

This space at Saratoga Springs High School started out as a repurposed gym/classroom, converted into a large upscale cafeteria.  

 

 

high school cafeteria

 

Our scope of work was to acoustically compare the existing condition to the architect’s intended design. Their plan was a change for the better but, after modeling the space, we made recommendations that would step up those improvements beyond the original goal, while still preserving the look. We added K13 FC roof deck treatment above the new ceiling clouds, as well as changing wall materials and cloud materials. The school is very pleased with the results.

 

Copyright AVL Designs Inc. 2024+

Do you know we are on YouTube? Stop by! Subscribe and you will be notified when new videos are posted.

 

Read More
camera

Massena High School – Not the Typical High School Theater Program!

In June of 2020 we were invited to tour Massena High School, located on the St. Lawrence Seaway, for an evaluation of their auditorium with future renovations in mind.

Auditorium seating

  As we arrived at the school and crossed the threshold of the facility, we were stunned to see elaborate 3D sets with staircases intertwined throughout, beckoning audiences to enter the riveting tale of “West Side Story.”  There was no doubt that Massena High School’s productions are top quality and out of the norm. This was not the typical high school theater program!

before picture of stage with 3D set for Westside Story

While they had some recently installed equipment in the room, most of the gear was getting old and needed to be replaced. The room itself was also aged and acoustically lacking.  Our goal was to elevate the sound, lighting and video quality to an excellence that matches that of their shows. Working with the architect, The IBI Group, we developed an innovative plan incorporating expanded capabilities including new catwalks, state-of-the-art LED lighting systems, new audio systems, new video systems, video production systems, and completely new controls. In terms of consoles and other peripherals, the renovation is now complete and is a truly impressive makeover of the space.

new controls

Some of the most noticeable changes are in a place that few people see:  the controls side of the room. There is an addition of an Allen and Heath D Live Series console and a new ETC Hog lighting console. Black Magic video controls, as well as higher-end Black Magic cameras, elevate this room technologically making a dramatic improvement over what they previously had.  All of the lighting has been upgraded to Electronic Theater Controls (ETC.)

allen & heath controls

  camera Every stage lighting fixture in the room has been replaced with LED color changing fixtures from Electronic Theater Controls, High End Systems and Varulite. Every fixture is now on relay-controlled power, which automatically shuts them off when they are not in use, thus extending their lives.

video screens in auditorium

The video systems are very impressive. Three 4k HD-enabled video screens are situated at the front of the room. They can be fed signals from broadcast production systems or a variety of computer sources.

You know, we seldom get to attend live productions after our work is done, but this is one school we wish were nearer our hometown. It would be nice to be in the audience enjoying the sights, sounds and experiences enhanced by our designs.  If you get to do that, let us know!

Copyright AVL Designs Inc. 2023+

.

Read More
Inside the Egg - the auditorium

Canterbury Woods Performing Arts Center

The newly opened Canterbury Woods Performing Arts Center is part of an extremely busy senior citizens community in the Buffalo, New York area. This distinctive facility can offer a broad variety of live shows to their residents far beyond what they were able to do in the past. Formerly, they did not have a true performing arts space of their own, limiting what was possible. The design objective was to provide them with a much more flexible high-tech performance space thus enabling them to bring in more interesting shows.

Canterbury Woods Performing Arts Center "The Egg"

 

If you hear someone say that this space is masterful, believe them! During the design-phase of the project, we affectionately called it “The Egg” inspired by the unique shape devised by the architect. At first glance, The Egg was going to be difficult to work with but we did and the end result has proven to be truly spectacular!

 

Auditorium at Canterbury

 

Acoustically, the challenge was to not allow the curves to generate echoes and other focused sound effects within the room. This was done with a variety of acoustically diffusive hard panels on the sidewalls and absorptive panels on the rear walls, working in conjunction with ceiling clouds to prevent focused energy and provide a good speech intelligibility into the seating area.

 

The room is comprised of several types of systems: 

  • Audio: In order to be user friendly for the visiting performance groups, we incorporated a versatile digital audio setup with the capability of bringing in analog audio consoles and/or guest digital consoles that can tie in directly to the systems. Now any group coming in can use the in-house Allen and Heath systems, or it will work for them to be able to use their own.
  • Lighting: This is all LED color changing and incorporates a variety of fixtures for a variety of purposes.
  • Rigging: There is a dead-hung stage rigging system, including a motorized main curtain that closes across the curved front of the stage.
  • Video: The room incorporates high-definition video projection, cameras, and other systems.

 

All of the systems are expandable. The original design incorporated a larger inventory of virtually everything, but budgets are budgets and we had to get it operating at a much lower cost. That is the mark of a quality theater consultant, if we do say so ourselves. We strive to get the best for our clients within necessary budgetary constraints.   The final result has been the creation of an enormously enjoyable performing arts venue!     Go over to their website and take a look!   Canterbury Woods Performing Arts Center

Copyright AVL Designs Inc. 2023+

 

Do you know we are on YouTube? Stop by; subscribe and you will be notified when new videos post.

 

Read More
solar panel field

Does Solar Power Make Noise?

 

solar panel field

So, let’s talk about solar power. Does solar power make noise, or doesn’t it?

We had someone approach us recently by email saying “Hey, we just need somebody to do a quick noise study. Shouldn’t be any big deal. Hopefully you can knock it off in a day or so.”  My response was “For what?” I quickly learned that it was a solar farm that has 12 gazillion acres of panels going into an area which is rural and has a community noise code. Look at my previous video. This was a noise code that basically says, “make sure nobody is bothered.”

Power Supplies Always Make Noise

I didn’t know a whole lot about solar power, but I do know about electrical devices. I know that dimmers, inverters, and any kind of power supply always makes noise. The bigger the power supply, the bigger the noise. The frequencies are dependent on the voltage at which they operate – what load they’re operating at.

Most things, oddly enough, make more noise at half-load than they do at full load. So, I had to do some research before I even took the project. I went online and found that on YouTube there are some great videos when you search for “solar farm noise.” There are some good ones that were measured very close to, or video shot very close to, some of the solar farm equipment.  The video revealed some really annoying 3 kilohertz and 6 kilohertz buzzing noises that came out of all this equipment. Now, knowing what we were dealing with, it seemed that we should be able to calculate where would be a problem. The town code didn’t really define proximity to the noise.  Was the code referring to where people live or was it about the property lines because the properties people own there are farms and they are huge. Some of this equipment is operating let’s say 300 feet from a property line, but it’s 2000 feet from the nearest house.

For Sure, This Thing Was Going to Buzz

What we were starting with is that we do know is that this thing was going to buzz. We were told that there were a ton of these inverters going in and they also had fans in them so that, so when they start overheating, they would cool. But how do you figure out when this is occurring? Our next move was to contact the manufacturer and we got a number from them that is just a dBA number at a particular distance. Well, that wasn’t helpful.  We needed more data. So, we sent them an email asking for FFT narrow band data and explained that we needed to know how they took levels on the other equipment. We needed measurements on all sides of the inverters to determine which side the noise was coming from. They denied our request.

Thinking that was kind of odd, we then went to their website and found that they have a white paper explaining how they are working to reduce the noise of inverters, which says to me they know they are noisy and that is why they didn’t want to give us the data. We explained to the people we were working for that with just dba we couldn’t know what frequencies are in it. We didn’t know if we were looking at fan noise in their number. Are we looking at fan noise with inverter noise, like buzzing? Are we looking at transformer noise from all the transformers on the site at lower frequencies? We didn’t know what we were looking at.

You want us to sign a what????

We found out that the only way they would provide this is if we signed an NDA, a non-disclosure agreement. What those mean is that any data they give you, you can’t disclose to anybody else.  We couldn’t use it in our measurements, and we couldn’t use it in any of our reports and summaries. In my world, and I know that not everybody agrees with this, this means they are probably hiding something.

So, when people talk about solar power and how wonderful it is, it may be wonderful unless you live next door to it in the wrong orientation. In our final report we basically gave them lots of warnings. We explained frequency content and we gave them links to videos on YouTube where they could hear what we’re talking about. We added that we could not predict when and where it was going to be or at what level because we simply could not obtain that data.  We did have the dBA numbers, though, and even those were higher than they should be at what we considered to be locations of concern.

Now let’s imagine we are talking about a neighborhood, and somebody wants to put a bunch of solar stuff on their roof with a small residential inverter. If they don’t put that inside their house and it ends up outdoors somewhere, we’ve seen some data online of some of the residential inverters where they rate them at say 50 dBA and they’re more like 80 under certain load conditions because of the buzzing noises. Some manufacturers are very good, some are very poor, so it is kind of a buyer beware thing.

Even if you are putting one in your house, if the inverter ends up inside your house and it’s making 3 kilohertz and 6 kilohertz of noises, go watch some of the videos online where they are installing it inside a house someplace. Obviously, the noise only happens when the sun is out.  At night it is not going to be making noise, but during the daytime it can produce a significantly annoying noise if it’s loud relative to what else is going on in your house.

Again, we would say “buyer beware.”  Solar does make noise and whether it’s a problem or not depends on where the equipment is placed, how loud it is, and a large number of other factors that are environmental. Just don’t commit to it without thinking your way through. 

/

Copyright AVLDesigns Inc. 2023+

Read More
bad acoustics

How To Avoid Bad Acoustics

When it comes to acoustics, it’s quite common for us to get a phone call when something has gone wrong. It seems like 9 times out of 10 somebody has proceeded on a project, and they have taken a direction — they have “done some things” — and now the end-user is not happy. Whether it is a performing art space, or music space or an industrial application, when the complaints start coming, that’s when we get hired. To be honest, it’s really the wrong way to go about doing things. What should be happening is they should hire an acoustical consultant first, before they design the project.  But in a lot of projects the end-users are not speaking up. They never say, “Oh by the way, I’m really concerned about sound.”  Or “I’m really concerned about this or really concerned about that” so the architects and engineers don’t even think about what the changes of finishes and dimensions may do to the sound in those areas until it is either too late or almost too late.

Let’s talk about one situation that came up very recently.  We got a call from an architectural/engineering firm about an auditorium that they were “renovating” “acoustically.” I put those words in quotes separately because the meaning of each can be obscure, to say the least.  It was a conference call and, during this call, somebody asked if did they did the right things? So, I asked “what is the reason you’re doing this?”  Their answer was “well, the room needed to be updated.”

Next, I asked them “what about the people who use the room? Do they like the way it sounds now?” We had visited it and It’s a nice, kind of average auditorium.  It has absorption on the back of the room, including a cavity that goes out the room to an outer lobby in some locations to provide some added resonance out there.   The sidewalls have some absorptive panels that are on standoffs from the wall to absorb lower frequencies than they would without it.

Listen!  The actual users already liked the way the room sounds!

No one ever asked the end users, do they like the room? Well, it turns out in this case they do. The plans in the works were about to change all that. This is a drywall room with a drywall ceiling, which means low frequencies are being absorbed through the drywall. The music department of this particular school likes the space. The changes that they were about to make are so radical that we were compelled to draw their attention to the drawbacks. We said, “look, you really need to analyze this before proceeding.” We do our analyses by conducting field testing. We take the existing condition, which the end-users like, and we compare that to what the estimate in a model says it will be once the proposed changes are implemented.  I believe, for the sake of everyone concerned, this is the prudent way of going about things. The “look before you leap” method.

Before Making Radical Changes, First Test It Out.

We suggested that we test, report and evaluate just what they would have, if they applied the changes they wanted to make. The plan was to treat the whole back of the room. They were going to take the perforated section that absorbs all sorts of energy, and they were going to make that solid. Next, they were going to curve it. Plus, they were going to cover it in ceramic tile “because it is durable.”

But not everything that seems like a good idea is a good idea. The plan was to have ceramic tile up to about 12 feet off the ground. Then above 12 feet, they were going to place acoustic diffusion using a product that has a relatively non-absorptive characteristic. It is a great diffuser, but diffusers should be placed down low on the wall, where your ears are. Putting 12 feet of ceramic tile below and all this diffusion up above is at an elevation where nobody is going to get the benefit.  It will diffuse some sound and that will then bounce off the ceiling. And all of this is going to make the room far bass heavier than it is now. It’s also going to add strident high frequencies because, believe it or not, drywall still has a small absorption coefficient even up at high frequencies. So suddenly you are going to have this room with a twang to it and diffusion occurs where no one sits. And this giant curve to be added to the back of the room will create a major echo back to the stage. So, we are truly hoping they hire us to solve this problem before it occurs.

Before making decisions, ask the end-users what they hear!

One of our ways of dealing with this is to send the end-users a questionnaire with guided questions to get a sense of what they hear. It is hard when you don’t get to meet with the people and hear a live performance where you all can talk about it and say, “Hey, what are you hearing?” But we do our best. What do you think about this? What do you think about that? And then we’re hopefully going to guide them to make changes that are in line with what the end user wants acoustically the result they’re looking for as opposed to a visual that somebody thought would be cool. Sometime manufacturers reps get involved in this process and they will say, “Hey, here’s a cool looking product.”  And they will make a lot of money if you buy it. And then they will put it all over the room and they don’t think about where it goes. And the inevitable complaints shall come.

The general rule of thumb for auditoriums is “down low” for reflective and diffusive surfaces. Where they get placed depends on more than just the room. It also gets placed based on the sound system and where speakers are bouncing off the walls, things of that nature. Typically, speakers go way up high in a room. If there’s anything up there, it’s absorption. Usually, it is relatively thin absorption to pick up high frequencies before they hit the ceilings and create kind of this weird after-ring-sheen that a lot of rooms have. So that’s kind of a general course, but what we’re hoping we’ll be doing is modeling it, finding a correction before it gets built. But my advice here is if you’re going to change a room, talk to the people who use it. If they say, “look, we want this room to be X” or “we’re happy with this room” you better be sure that what you are doing doesn’t change the way the room sounds. If you want to change it visually, that’s great. A coat of paint can do that. But don’t start putting in materials with an unknown characteristic.

By the way, the YouTube version of this is a fireside chat: How To Avoid Doing Bad Acoustics – A Fireside Chat with Seth Waltz    We have a lot of other videos on various subjects. Please watch and subscribe to get the most current videos.

 

/

Copyright AVL Designs Inc. 2023+

Read More